
8 CROSSTALK The Journal of Defense Software Engineering February 2006

Applying RAMS Principles to the Development of a 
Safety-Critical Java Specification

Almost all software for aerospace and defense applications is required to satisfy reliable, available, maintainable, and safe
(RAMS) objectives. While many RAMS issues are best addressed by requiring that software developers consistently adhere
to particular development methodologies, a development team’s selection of commercial off-the-shelf technologies, including
choice of programming language, run-time environment, and libraries, may also impact the team’s ability to satisfy RAMS
requirements. This article evaluates a proposed specification for safety-critical Java in terms of RAMS principles, comparing
the use of the draft safety-critical Java standard with traditional approaches based on C, and motivating the restrictions
imposed by the safety-critical Java specification in comparison with use of traditional Java and the general purpose Real-Time
Specification for Java. The RAMS solutions that have been designed for the proposed safety-critical Java specification apply
equally well to a breadth of defense and aerospace application domains, including hard real-time mission-critical code for com-
munication, sensing, guidance, and automation subsystems.

Dr. Kelvin Nilsen
Aonix

The Radio Technical Commission for
Aeronautics (RTCA) DO-178B guide-

lines [1] are designed to span a range of
criticality levels. The most life-critical soft-
ware components in an avionics system
are characterized as Level-A. Failure of a
Level-A software component is consid-
ered catastrophic. Without this component,
further flight and/or landing of an aircraft
is considered impossible. Failure of a
Level-C component is considered major,
reducing the ability of a crew to cope with
flight responsibilities, but not significantly
increasing the risk of a crash. The safety-
critical Java specification that is under
development is designed to span the full
range of DO-178B levels. In this regard, it
addresses both life-critical and mission-
critical systems.

Satisfying DO-178B certification
requirements involves considerable engi-
neering discipline. Enforcing this disci-
pline is the responsibility of project man-
agers and team leaders. Peer reviews are
required at every step of the development
process. Extensive documentation and
accountability audit trails are required to
ensure that no corners are cut in design,
development, and testing of the safety-
critical software. The DO-178B guidelines
are independent of programming lan-
guage choice. Regardless of programming
language, engineers are required to
address all of the same issues and gather
all of the same documentation artifacts.
You might reasonably ask, “What differ-
ence does the choice of programming lan-
guage make?”

To answer this question, it is necessary
to look more closely at some of the issues
that must be addressed by developers of
mission-critical and safety-critical systems.
This article focuses on the programming
language impact with respect to four

broad issues: reliability, availability, main-
tainability, and safety (RAMS). In dis-
cussing these issues, we draw comparisons
between using C, C++, the Real-Time
Specification for Java (RTSJ) [2], tradition-
al Java [3], and the proposed safety-critical
specification for Java [4, 5]. Even though
these issues can be addressed satisfactorily
in a number of different languages, certain
languages require less effort to address
than others.

The draft safety-critical specification
that is discussed here is currently under
consideration for submission as a Java
Community Process (JCP) standard. A
prototype implementation of this specifi-
cation is currently under development.
Based on feedback from early evaluators,
we expect to make appropriate refine-
ments to the specification before submit-
ting the final result for standardization
under the JCP. We expect submission of
the standard to take place during 2006. To
track the progress of this ongoing specifi-
cation and standardization work, refer to
<http://research.aonix.com/jsc>.

Reliability
Among key considerations of developers
focused on delivering high reliability are
the following:
• The language and run-time environ-

ment must be sufficiently simple so
they are easily understood.

• Ideally, the language and standard
libraries behave consistently across
platforms. Otherwise, programmers
are likely to overlook incompatibilities
when shifting their development
efforts or migrating software compo-
nents from one platform to the next.

• To help programmers manage com-
plexity reliably, good programming lan-
guages support abstractions that allow

programmers to separate concerns
between independent components.

• Over the years, computer scientists
have experimented with a variety of
programming language features. Some
very powerful features are easily mis-
used, with far-reaching consequences.
Certain features – such as implicit
coercion of integer to Boolean – have
been shown to be very error-prone.
Programming languages that omit
dangerous and error-prone features
make it easier for developers to build
reliable systems.
One of the main reasons Java has been

such a popular alternative to C and C++ is
because it is a much more portable pro-
gramming language. This portability has
resulted in a variety of important benefits.
First, the standard libraries behave similar-
ly across a wide variety of central proces-
sor unit (CPU) architectures and operating
systems. Second, third-party developers of
open-source and commercial off-the-shelf
Java components are able to distribute
these libraries in portable binary represen-
tations, without regard for on which plat-
form they will be used. Third, developers
of embedded systems can develop and
test their software on fast, large-memory
desktop machines, and then deploy the
completed software on much slower,
memory-limited embedded targets with-
out concern that the code will behave dif-
ferently in the embedded environment.
Fourth, the learning curve for programmers
consists only of learning the portable plat-
form. No additional effort is required to
learn the peculiarities of each implemen-
tation of the platform running on each
different real-time operating system
(RTOS).

These portability benefits are relevant
to developers of safety-critical code. The

 



Applying RAMS Principles to the Development of a Safety-Critical Java Specification

February 2006 www.stsc.hill.af.mil 9

relevance of these benefits to system reli-
ability is that (1) programmers are less
likely to introduce errors because they
have misunderstood or overlooked pecu-
liarities of a particular Java implementa-
tion, and (2) the ability to reuse compo-
nents across different platforms means a
typical safety-critical deployment has a
higher percentage of mature, time-proven
software components in place versus cus-
tom-tailored software components that
have never been used before.

Though the Java platform is portable
with respect to functional behavior, stan-
dard-edition Java does not provide porta-
bility with respect to real-time issues. For
example, the amount of memory allocated
to create a particular data structure may
vary significantly from one Java imple-
mentation to the next. And the scheduling
of threads is also highly platform-depen-
dent. To address these issues, the draft
safety-critical Java specification carefully
defines the precise semantics of a very
small subset of the full Java Standard
Edition libraries in combination with a
small subset of the full RTSJ.

The selection of these libraries focus-
es on providing the minimal functionality
required as a portable and extensible foun-
dation upon which to build safety-critical
systems. We annotate this set of libraries
to characterize which services must be
time- and memory-bounded, and we make
these same annotations available to appli-
cation developers so they can document
their intentions with respect to the code
they develop. A special safety-critical byte-
code verifier (static analysis tool) enforces
that method implementations are entirely
consistent with the supplied programmer
annotations. All of this clarifies which
components can be reliably used in hard
real-time contexts, including interrupt
handlers. Further, determination of the
memory and CPU time resources required
for reliable operation of hard real-time
software components is automatic.

Contrast this with the typical approach
of a C or C++ developer. Since these lan-
guages were not designed for multi-thread-
ed environments, the existing standards do
not address the code generation issues that
affect information sharing between
threads. If a particular thread modifies a
shared variable, even a variable that is
defined as volatile, the propagation of the
new value to other threads that are moni-
toring the same variable is highly non-
portable. C and C++ programmers must
understand the code generation model for
each of the optimization modes they
choose to use with their compiler. They
must understand the underlying architec-

ture’s cache coherency model, and must
study the underlying, real-time operating
system’s thread-scheduling semantics.

Often, the information required to
develop reliable code is not well docu-
mented, and programmers have to spend
considerable time and effort performing
detective work to make sure they fully
understand the platform they are target-
ing. This detective work often consists of
trial-and-error experimentation. This may
leave developers with lingering uncertain-
ties as to whether their experimentation
has uncovered all of the underlying plat-
form’s peculiarities and that they fully
understand them. The software they write
must be tested extensively to make sure it
runs correctly on the targeted platform;
however, the assumptions on which the
correct operation of the software depends

are rarely documented. If this software is
ever moved to a different CPU, compiler,
or RTOS, then extensive code review and
retesting are required.

The RTSJ exhibits some of the same
difficulties encountered by C and C++
developers. Though this specification
more carefully constrains real-time opera-
tion of threads than Standard Edition
Java, it does not fully specify the semantics
of the real-time libraries. Many of the
capabilities offered within the RTSJ
framework are optional, and the exact
semantics of certain other features such as
precisely when to trigger execution of a
deadline-overrun handler are incompletely
defined. This is one of the reasons that
the draft safety-critical Java specification
selects a subset of the full RTSJ frame-
work. This subset specifically excludes

capabilities that are difficult to define and
implement in a portable way, and avoids
many complex and costly features that are
less relevant to developers of safety-criti-
cal or hard real-time systems. This results
in a much smaller, more easily understood
subset of core functionality, early imple-
mentations of which run more than three
times faster than existing full RTSJ imple-
mentations on certain benchmarks.

Certain programming abstractions that
are critical to developers of safety-critical
code are totally irrelevant to typical devel-
opers of management information sys-
tems. Thus, languages like C, C++, and
Standard Edition Java do not provide sup-
port for these abstractions. Consider, for
example, the need of safety-critical devel-
opers to know the following:
1. Exactly how much real memory is

required for the run-time stack of a
safety-critical thread. (Note that safety-
critical systems generally do not have
hard disks and have no support for vir-
tual memory or for dynamic expansion
of a run-time stack.)

2. Exactly how much memory is required
to represent a particular data structure
that is going to be shared between
multiple threads.

3. Exactly how much CPU time is
required to reliably execute particular
threads within real-time timing con-
straints [6].

4. Exactly how much time each thread
might need to block while waiting for
access to a shared resource that is
required to complete a particular safe-
ty-critical task on schedule [6].
The safety-critical Java proposal

addresses these issues by introducing stan-
dard meta-data annotations that allow
programmers to constrain the behavior of
particular methods. For example, an
@StaticAnalyzable annotation denotes
that the implementation of the method
must adhere to particular style guidelines
that allow the memory usage and the CPU
time to be automatically determined. A
special safety-critical byte-code verifier
enforces that the code conforms to these
style guidelines, and a separate static analy-
sis tool determines the resource needs for
each targeted platform.

Another special, hard real-time
abstraction supported by the draft safety-
critical Java proposal is a special synchro-
nization mechanism known as priority
ceiling emulation. With this mechanism,
the programmer is required to specify an
upper bound on the priorities of threads
that might attempt to perform synchro-
nized access to each lock. This upper
bound is known as the ceiling priority.

“Often, the information
required to develop

reliable code is not well
documented, and

programmers have to
spend considerable time
and effort performing

detective work to make
sure they fully

understand the platform
they are targeting.”



A New Twist on Today’s Technology

10 CROSSTALK The Journal of Defense Software Engineering February 2006

When a thread acquires this lock, the
thread’s priority is immediately boosted to
the ceiling priority. When the thread
releases the lock, the thread’s priority is
restored to its original value.

Within the safety-critical profile, prior-
ity ceiling emulation is the only supported
synchronization mechanism. A specializa-
tion of priority ceiling locks is known
within the safety-critical profile as atomic
locking. Programmers make use of a spe-
cial syntax to identify objects that use
atomic priority ceiling emulation to coor-
dinate shared access between multiple
threads. For each such object, the safety-
critical byte-code verifier assures that the
component does not perform any block-
ing operation while a given thread holds
the object’s atomic lock. With this byte-
code enforcement in place, the implemen-
tation of atomic locks (on single-proces-
sor systems1) is very efficient and the
worst-case blocking time to access an
atomic lock is easily analyzed.

In particular, if a given thread is able
to reach the point of entry to that lock, it
is guaranteed that no other thread owns
the lock. If another thread owned the
lock, it would be executing at a higher pri-
ority so this thread would not be running.
Thus, the blocking time is always zero.
This important abstraction is recommend-
ed for all resource sharing among hard
real-time safety-critical threads. It can only
be implemented reliably through coordi-
nation between static analysis tools and
run-time services. This coordination is
provided within the safety-critical Java
profile. It is not available in C, C++,
Standard Edition Java, or the RTSJ.

Another important consideration is
management of temporary scratch pad
memory during the execution of hard,
real-time, safety-critical threads. Tempo-
rary memory may be required to support
digital signal processor analysis of sensor
inputs, and to manage buffers for commu-
nication with redundant onboard, safety-
critical modules and with remote systems
that are, for example, providing air traffic
control directives. The C malloc()/free()
and C++ new()/delete() services are sub-
ject to memory fragmentation. Thus, they
should not be used in memory-limited,
safety-critical systems.

Java’s automatic garbage collection sys-
tem can defragment the dynamic memory
heap. But the complexity and asynchrony
of automatic garbage collection are very
difficult to certify to the satisfaction of
Federal Aviation Administration auditors.
For this reason, the draft safety-critical
Java profile provides an alternative memo-
ry management technique. We identify this

approach as safe-scoped memory. It is a
generalization of the RTSJ’s scoped mem-
ory abstraction. In essence, the draft safe-
ty-critical profile allows objects to be allo-
cated within the activation frames of each
method.

In contrast with C and C++, which
also allow objects to be allocated on the
run-time stack, the safety-critical Java pro-
posal uses programmer annotations to
track the flow of stack-allocated objects;
its byte-code verifier guarantees that no
reference to a stack-allocated object lives
longer than the object itself. This solves
the all-too-common dangling pointer
problem that plagues C and C++ devel-
opment.

In contrast with the full-RTSJ scoped
memory abstractions, which also prevent
dangling pointers, the safety-critical pro-
file detects scoped memory violations at

compile time rather than at run-time. In
summary, the proposed safety-critical Java
temporary memory abstractions support
much more reliable operations than com-
mon alternatives.

Availability
Availability addresses the requirement that
high-integrity software must be always
ready to perform its function. Availability
is often measured in terms of a quantity
of nines, representing the percentage of
total time that the high-integrity system
can be relied upon to fulfill its duty. For
example, seven nines availability means the
system is running reliably 99.99999 per-
cent of the time. Note that seven nines
operation allows only half a second of
downtime per year.

Strategies for assuring high availability
generally consist of a combination of the
following:
• Take every reasonable action to maxi-

mize reliability as this will extend the
mean time between failures. Reliability was

discussed in the previous section.
• Minimize downtime whenever failures

are encountered by doing the following:
o Provide fast, deterministic restart

of a failed system.
o Provide fast, deterministic recon-

figuration of software device dri-
vers whenever failed hardware
components might have to be
replaced with upgraded hardware –
if possible, upgrade device drivers
and hot-swap hardware without
rebooting.

• Support redundant computation and
communication so that standby com-
ponents can quickly take responsibility
for ongoing services when particular
components fail.
Providing a fast, deterministic restart

of a failed system is an obvious require-
ment for high-availability applications.
Achieving this objective is not trivial.
Consider how long it takes to turn on typ-
ical computers and various smart gadgets
such as cell phones. Startup is especially
troublesome in typical Java environments,
including compliant, full RTSJ implemen-
tations, because the startup process
includes dynamic loading of byte code
and translation of this byte code into
native machine language by just-in-time
(JIT) compilers.

The draft safety-critical Java profile
addresses this concern by requiring static
compilation, initialization, and linking of
components. Unlike traditional Java, in
which the initial values of many shared
variables – even of so-called constant vari-
ables – depends on the order in which cer-
tain non-deterministic startup activities
are performed, the safety-critical profile’s
byte-code verifier enforces fully determin-
istic initialization of shared static vari-
ables. The safety-critical Java linker binds
all of the components together and initial-
izes shared memory in the static load
image. The large majority of this load
image can be burned into read-only mem-
ory (ROM) and accessed directly out of
ROM. Only objects with variable contents
must be copied into random access mem-
ory at startup time.

Occasionally, highly available systems
experience hardware failures. When hard-
ware must be replaced, it is often neces-
sary to replace software device drivers that
control the hardware. Few real-time oper-
ating systems provide direct support for
dynamic replacement of device drivers.
Larger desktop operating systems usually
support plug-and-play devices, but the
protocols for using plug-and-play tech-
nologies are not especially reliable. Often,
conflicts between device drivers supplied

“Certain programming
abstractions that are

critical to developers of
safety-critical code are

totally irrelevant to
typical developers of

management information
systems.”



Applying RAMS Principles to the Development of a Safety-Critical Java Specification

February 2006 www.stsc.hill.af.mil 11

by different vendors result in unreliable
operation of the newly configured envi-
ronment. A goal for the safety-critical Java
profile is to support reliable and deter-
ministic reconfiguration of device drivers,
both for situations in which the device dri-
vers are replaced without downtime and
for situations in which hardware replace-
ment requires system reboot.

As with many other issues, the safety-
critical Java profile tackles this challenge
using a combination of programmer
annotations, special byte-code verification,
and reliable run-time memory manage-
ment services, specifically the following:
1. All of the memory consumed by a

device driver is organized as a contigu-
ous region of a budgeted size. If a par-
ticular device driver is removed, all of
the memory previously set aside for
that device driver is instantly reclaimed
without any fragmentation issues. This
memory can serve the needs of the
replacement device driver.

2. The safety-critical Java profile provides
annotations to allow programmers to
describe the interface requirements of
device drivers in sufficient detail to
allow the static analysis tools to verify
that a particular device driver is a suit-
able replacement for an existing device
driver. Specifically, programmers can
do the following:
a. Characterize which inside/outside

ports the device needs to read and
write.

b. Identify to which interrupt vectors
the device driver needs to respond.

c. Specify the maximum amount of
time the device driver is allowed to
hold particular interrupts disabled.

d. Define the precise entry points
whereby application code commu-
nicates with the device driver, and
enforce that every invocation of
these services is consistent with the
interface expectations for that ser-
vice.

Support for redundant computations
and failover processing is not directly sup-
ported by the safety-critical Java profile. It
is important to note that the Java platform
was originally introduced as an Internet
programming language. As such, there is
considerable experience using Java for
networked applications. Since the draft
safety-critical Java profile establishes a
strong foundation for reuse of portable,
hard, real-time software components, it
should be straightforward to develop
portable libraries to support safety-critical,
networked communications to support
fault-tolerant and high-availability redun-
dant computations.

Maintainability
With many safety- and mission-critical
systems, fielded software must endure for
many years, often several decades. During
its useful lifetime, this software evolves in
response to changing platform require-
ments, new communication protocols,
integration of new functionality, and so
forth. Over the lifetime of a particular sys-
tem, it is common for the costs of soft-
ware maintenance to far exceed the costs
of the original software development.
Typical maintenance activities include (1)
fixing a bug, (2) addressing a performance
issue, or (3) adding new functionality.

Maintaining real-time software is partic-
ularly difficult because the declared inter-
faces for C and C++ components do not

reflect all the conditions required for reli-
able composition of real-time components.
This means developers who are called
upon to make changes to existing software
cannot determine by looking at the com-
ponent interface alone what rules they
must follow for their changes to integrate
reliably with other existing software. In par-
ticular, they do not know the following:
1. Whether incoming arguments might

refer to temporary objects or perma-
nent objects, and whether the refer-
enced objects might be shared with
other threads.

2. Whether memory resources have been
budgeted to allow the implementation
of a particular service to allocate per-
manent or temporary objects.

3. Which memory allocation budgets
must be increased for this revised
component to be able to reliably allo-
cate additional memory.

4. Which memory allocation budgets can
be decreased to make this component
run more efficiently.

5. Which task cost-estimates must be
modified if changes to this component
affect its CPU time requirements.
Maintainers of real-time software

must search for all the contexts in which
particular components reside to determine
what sort of changes they may make to
those components without compromising
system reliability.

Scalability is a generalization of main-
tainability. Many modern software systems
experience evolutionary change that tracks
Moore’s Law [7]. As processors and com-
puter memory decrease in cost and
increase in capacity, software grows in size
and complexity to match the new capacity.
Studies of certain commercial, embedded
software systems have observed that it is
common for software size to double every
18 to 24 months [8].

Compared with C and C++, Java has
shown tremendous strengths as a plat-
form to support easy integration and eco-
nomic scalability. This is because all of the
Java software is very portable, and because
strong object-oriented abstractions mean
that independently developed compo-
nents integrate cleanly, without compro-
mising the integrity of each other’s encap-
sulation boundaries. C, in contrast, offers
very little to help manage the complexity
of ever-expanding software systems. With
its object-oriented features, C++ does
much better than C at separating concerns
of independent software development
teams to facilitate software maintenance
and scalability issues. However, the lack of
true portability, the inherent complexity in
the language itself, and its lack of auto-
matic garbage collection makes C++ a
more difficult tool than Java in its support
for software maintenance and scalability.

The proposed safety-critical Java pro-
file addresses these issues by doing the fol-
lowing:
1. Maintaining real-time software as

Vanilla Java source code with Java
Development Kit 5.0-style meta-data
annotations to document the interface
requirements associated with each
software component.

2. Providing automatic consistency
checking between independent inter-
faces, assuring that each method invo-
cation satisfies the annotated interface
requirements, that overriding method
interfaces are consistent with the over-

“A goal for the
safety-critical Java profile

is to support reliable
and deterministic

reconfiguration of device
drivers, both for

situations in which the
device drivers are
replaced without
downtime, and for
situations in which

hardware replacement
requires system reboot.”



A New Twist on Today’s Technology

12 CROSSTALK The Journal of Defense Software Engineering February 2006

ridden interfaces, and that method
implementations are entirely consis-
tent with the annotated method inter-
face declarations.

3. Providing automated analysis to deter-
mine memory and CPU-time resource
requirements to allow automatic con-
figuration of resource budgeting and
real-time scheduling each time any
system component is modified.
Tools to automate the required consis-

tency checking and resource needs analy-
sis are not generally available for C and
C++ development.

Safety
With respect to software systems, safety
represents the notion that the computer
system will do no harm. In this regard,
safety is opposed to availability and relia-
bility. The safest computer system might
be the system that never gets powered on.
Assuming that we are required to satisfy
safety objectives in combination with reli-
ability and availability objectives, the safe-
ty consideration consists primarily of sat-
isfying safety certification requirements.

Of particular relevance to safety certi-
fication requirements is the mechanism
for deployment of native machine code.
Level-A certification requires that all code
coverage analysis and testing be per-
formed with the native machine language,
and that responsibility for every machine
code instruction and for every test case be
traceable from original system require-
ments to architecture and design, to
source code and test plans, and finally to
machine code.

If certain machine instructions are not
exercised sufficiently by the existing test
cases, developers are required to analyze
whether the code is really necessary to
satisfy the system requirements. If that
code is not necessary, the corresponding
source code should be removed or
restructured to make it more consistent
with the system requirements. If the code
is necessary, the test plan must be modi-
fied to make the test plan consistent with
the original system requirements. In some
cases, failure of test cases to cover all
machine code reveals inaccuracies or
inconsistencies in the original system
requirements. In that situation, the origi-
nal system requirements must be refined.
Always, a complete traceability audit trail
must be maintained.

Note that the traditional Java execu-
tion model is entirely inconsistent with
this requirement for traceability from
source code to machine code. Traditional
Java virtual machines hide the translation
of byte code to machine code within a

JIT compiler that is part of the run-time
environment. Some sophisticated virtual
machines actually produce multiple
native-code translations for each byte-
code method, optimizing the code differ-
ently in each translation based on run-
time profiling information. The safety-
critical Java profile addresses this issue by
supporting deterministic compilation,
linking, and initialization model. The
entire safety-critical application is translat-
ed to native machine code and linked into
a ROM-loadable image prior to execution.
Since this technology is designed to sup-
port safety-critical development, tools will
facilitate mappings between machine code
and the corresponding source code.

C and C++ development tool chains
provide similar traceability support
between source code and machine code.

Summary
Across the spectrum of RAMS objec-
tives, the draft safety-critical Java specifi-
cation offers important benefits over
alternative approaches based on C, C++,
traditional Java, or RTSJ Java. As com-
mercial implementations of the proposed
safety-critical Java standard become avail-
able, developers of safety-critical systems
will be able to more economically deliver
high-quality software that satisfies RAMS
objectives.u

References
1. Radio Technical Commission for

Aeronautics, Inc. “RTCA DO-178B,
Software Considerations in Airborne
Systems and Equipment Certifica-
tion.” Washington, D.C.: RTCA, 1
Dec. 1992 <www.rtca.org>.

2. Bollella, G., J. Gosling, B. Brosgol, P.
Dibble, S. Furr, and M. Turnbull. The
Real-Time Specification for Java.
Addison-Wesley, Jan. 2000 <www.rtj.
org>.

3. Sun Microsystems Inc. “The Java
Language Environment: A White
Paper.” Mountain View, CA: Sun
Microsystems, Inc., 1995 <http://java.
sun.com/docs/white/langenv>.

4. Nilsen, K. “Making Effective Use of
the Real-Time Specification for Java.”
San Diego, CA: Aonix, Oct. 2004
<http://research.aonix.com/jsc/rtsj.
issues.9-04.pdf>.

5. Nilsen, K. “Draft Guidelines for
Scalable Java Development of Real-
Time Systems.” San Diego, CA: Aonix,
May 2005 <http://research.aonix.
com/jsc/rtjava.guidelines.5-6-05.pdf>.

6. Klein, M., T. Ralya, B. Pollak, and R.
Obenza. A Practitioner’s Handbook
for Real-Time Analysis: Guide to Rate

Monotonic Analysis for Real-Time
Systems. Kluwer Academic Publishers,
Nov. 1993 <www.sei.cmu.edu/publi
cations/books/other-books/rma.
hndbk.html>.

7. Moore, Gordon. “Cramming More
Components Onto Integrated Cir-
cuits.” Electronics Magazine 19 Apr.
1965.

8. Bourgonjon, R. “The Evolution of
Embedded Software in Consumer
Products.” International Conference
on Engineering of Complex Com-
puter Systems, Ft. Lauderdale, FL,
1995 (unpublished keynote address).

Note
1. On a multiprocessor system, the

implementation is a bit more complex,
but the programming and static analy-
sis abstractions are comparable. The
safety-critical Java profile is designed
to support straightforward migration
of hard real-time code from single-
processor to multi-processor imple-
mentations.

About the Author

Kelvin Nilsen, Ph.D., is
chief technology officer
of Aonix, an internation-
al supplier of mission-
and safety-critical soft-
ware solutions. Nilsen

oversees the design and implementation
of the PERC real-time Java virtual
machine along with other Aonix prod-
ucts, including ObjectAda compilers,
development environment, libraries, and
commercial off-the-shelf safety certifi-
cation support. Nilsen’s seminal research
on the topic of real-time Java led to the
founding of NewMonics, a leader in
advanced real-time virtual machine tech-
nologies to support real-time execution
of Java programs. In 2003, Aonix
acquired NewMonics. Nilsen has a
Bachelor of Science in physics from
Brigham Young University and a Master
of Science and doctorate degree both in
computer science from the University of
Arizona.

Aonix
877 S Alvernon WAY
Tucson, AZ 85711
Phone: (520) 991-6727
Fax: (520) 323-9014
E-mail: kelvin@aonix.com


